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Foreword

Polymerase chain reaction (PCR) methods began to appear in the literature in the
early 1980s, with a variety of adaptations of the basic technique emerging over
the subsequent 20 years. These adaptations have relevance to many fields
including basic research, clinical investigations, and forensic science. In this
volume of the Scion book series Methods Express, we present a collection of some
of the most interesting adaptations and applications of PCR. The chapters are
supported by references covering the development, testing, and validation of each
method, along with examples of research applications. References of particular
interest are also indicated with asterisks to guide the reader to papers of
importance in understanding the uses, capabilities, and expected performance of
each method.

In any method-based book, it important to realise that information is not
knowledge. We once assumed the role of books was the transfer of knowledge,
but in actual fact, what is being transferred is information, which requires a
context for the reader to maximize learning. In the laboratory, if an experienced
researcher sees you struggle, they can offer a solution or a technique they learned
after being in a similar situation. The work of Michael Polanyi on learning (Polanyi
was a chemist in early life) established a two-way look at knowledge: explicit
knowledge is written down, as in a book or manual, whilst tacit knowledge is the
result of experience and typically resides in the expert’s mind and is difficult to
collect and distil. The key lies in the ability to transfer expert, or tacit, knowledge,
and in finding ways of capturing the lessons learned by experts after years of
working in a scientific field, or with a particular technique or tool, such as PCR,
and convey this as a written document. As PCR continues to grow in use and value
across scientific disciplines, this book will provide an approach to pass the
knowledge of most value on to readers working in the field.

PCR: Methods Express is an up-to-date compendium of techniques and
approaches. More than a reference manual for PCR methods, it is also a deliberate
attempt to capture and share tricks-of-the-trade, lessons learned, and ‘simple
solutions to common problems’. Tell me how to do this, but also tell me which of
the possible approaches offered is best for my circumstances, and help me
troubleshoot when things happen differently than expected. This volume provides
just that: it provides the tacit knowledge of PCR.

Jeff Witherly
Author of An A to Z of DNA Science: What Scientists Mean When They Talk

About Genes and Genomes
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Preface

This book is intended to supply fundamental practical information for basic,
clinical, and student researchers interested in using PCR methods in their research.
It is structured not only to impart protocols, but also to illustrate the great variety
of applications in which PCR plays a fundamental role.

The motivation for preparing this book came from the realization that an up-
to-date, affordable book covering a wide array of the practical aspects of PCR
techniques does not exist. The offerings of information in the text are intended to
cater to the broad range of abilities among students, clinicians, and technologists,
and hopefully will permit more exploratory experiments using this amazingly
versatile tool.

We wish to thank all those who kindly gave of their time and skill to prepare
the exceptional chapters herein. We would also like to acknowledge all the rest of
the people who have made this book possible. We hope you find this text valuable
and we welcome comments and ideas for future editions.

Simon Hughes & Adrian Moody 
February 2007
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CHAPTER 12
Construction of long DNA molecules
from multiple fragments using PCR
Nikolai A. Shevchuk and Anton V. Bryksin

When a DNA molecule has to be assembled from three or more unrelated
fragments, it can often be more convenient to use a PCR-based method called
long multiple fusion (1) instead of the traditional restriction enzyme/ligation
cloning. If an error rate of about 1 per 7000 bp is acceptable, long multiple fusion
can be employed to assemble a linear recombinant DNA molecule of up to 10 kb
from five fragments, or of up to 20 kb long from three fragments, precisely and
quickly. This linear recombinant DNA molecule can then be cloned into a plasmid
vector, if necessary.

The method described in this chapter could prove useful for such applications
as the development of multi-domain vaccines and the construction of plasmid
vectors and gene-targeting vectors, as well as for the assembly of viral genomes
for basic and vaccine research. 

The technique offers more flexibility and is less time- and labor-consuming
than traditional cloning, which can often lead to introduction of unwanted
sequence at fusion points. The long multiple fusion method has proved itself over
a wide range of DNA sources, sizes of fused fragments, and final application of the
obtained recombinant molecules (2–8).

2.1 Principles of long multiple fusion

The method consists of three major steps (see Fig. 1).

• Step 1. During the first step, the fragments are amplified from the original
source using chimeric primers carrying overlapping sequence at their 5¢ ends.

2. METHODS AND APPROACHES

1. INTRODUCTION

PCR: (S. Hughes and A. Moody, eds.) 

© Scion Publishing Limited, 2007
Methods Express
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Figure 1. Outline of long triple fusion. 
(a) Fragments are amplified form the original source using chimeric primers carrying
overlapping sequence at their 5¢ ends. (b) Fragments are allowed to anneal and form
intermediary products (PCR Step A) and, finally, the recombinant end product is amplified
(PCR Step B). The correctness of the assembly is then verified using agarose gel
electrophoresis and/or sequencing of critical regions.
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• Step 2. Fragments are allowed to anneal and form intermediary products (PCR
Step A in Fig. 1).

• Step 3. The recombinant end product is amplified (PCR Step B in Fig. 1)

The accuracy of the assembly can then be verified using agarose gel
electrophoresis and/or sequencing of critical regions. The method has several
pitfalls that need to be avoided in order to assemble the recombinant product
successfully. All of the key points that are often overlooked by researchers who
follow the method described in our original paper (1) are discussed in the section
below and in section 3.

The long multiple fusion technique was born from the synthesis of long
PCR with overlap-extension PCR (9, 10). Existing protocols of overlap-extension
PCR are limited to regular (short) PCR, i.e. with a limit of about 3–4 kb (11, 12),
and have been limited to the fusion of only two DNA fragments (13). Recently,
others have described methods for the assembly of up to ten short fragments
using modifications of overlap-extension PCR (14), but the length of the end
product was limited to about 5.5 kb. Our long multiple fusion method allows
the creation of recombinant products as long as 20 kb from three fragments
(1), and has been used successfully to assemble 10 kb products from four (1) or
five (A.V. Bryksin, unpublished data) fragments. Long multiple fusion can
facilitate the construction of highly complex recombinant DNA molecules for
various applications (2–8, 14). For example, potentially it can allow a vaccine
researcher to create multiple custom-made viral genomes within a short time
frame or develop complex multi-domain vaccines and other recombinant
proteins. It can also be used for the assembly of sophisticated gene-targeting
constructs (7, 12).

2.2 Limitations of long multiple fusion

PCR, even when performed using a proofreading enzyme, will lead to a small
number of base changes (PCR errors). In a typical long multiple fusion set-up, we
found the error rate to be below 1 base change per 6.6 kb (1). To ensure fidelity of
the assembly and the absence of PCR errors in critical regions of a recombinant
construct, sequencing of critical regions prior to assembly is advisable.
Resequencing of critical regions in the final product is recommended. The
expected error occurrence in the final product can be calculated from the total
number of PCR cycles used throughout the whole procedure and the error rates of
the PCR kits used. If the error rate (expressed in errors per megabase (Mb) per
cycle) is multiplied by the total number of PCR cycles, this will yield the expected
number of errors in the final product per Mb, e.g. 150 errors/Mb. If this value is
then divided by 1000, this will give the error rate per kilobase (kb), i.e. 0.15
errors/kb. Finally, if this value is then multiplied by the length of the final product,
it will give the number of expected errors in the final fusion product. A typical
error rate of a long triple fusion procedure is approximately one error per 6.6 kb
(1). If this error rate is unacceptable, then traditional restriction enzyme/ligation
cloning should be used. The planning of a complex cloning project using the
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traditional approach can be simplified with the software application VECTOR NTI

ADVANCE (Invitrogen), available free of charge to academic users at the time of
writing.

It should also be noted that a PCR product, even when gel purified, can
contain a very small amount of nonspecific PCR products. To obtain an
extremely pure product (which may not be necessary for many applications), the
PCR fusion product may have to be cloned into a plasmid vector and verified by
partial sequencing. For this purpose, TOPO vectors (Invitrogen) or T-vectors can
be used.

2.3 Factors critical for successful long multiple fusion

• The component fragments shown at the top of Fig. 1 have to be amplified with
a polymerase that has a 3¢Æ5¢ proofreading activity, for example Pfu
polymerase, rather than Taq polymerase. A combination of Taq with Pfu, as
found in long-PCR kits, is also suitable. The problem with Taq polymerase is
that it leaves single A nucleotide overhangs at the 3¢ ends, which will disrupt
priming of the overlapping regions during the overlap extension reaction (15),
shown in Fig. 1 (PCR Step A). An enzyme with proofreading activity will
generate PCR products that have predominantly blunt ends (without extra A
nucleotides added at the end) allowing successful overlap extension among
DNA fragments (see Protocol 2). The following is a list of PCR kits that we have
used successfully for amplification of component fragments: 
•• TripleMaster polymerase (Eppendorf)
•• Advantage-HF 2 PCR kit (Clontech)
•• Herculase HotStart DNA polymerase (Stratagene)
•• EXL polymerase PCR kit (Stratagene)
•• Long Template Expand polymerase (Roche)
Avoid using the DeepVent polymerase kit, even though it is mentioned in the
original publication (1); this kit requires extensive optimization and can cause
many problems.

• Exposure of the PCR products to UV light should be avoided and all
purification steps should be limited to ‘bind-and-wash’ or desalting methods,
such as a QIAquick PCR purification kit (Qiagen). We found that UV light and
handling of agarose slices containing DNA bands will make the DNA template
unusable for long multiple fusion, most likely due to damage and nicking of
the DNA. An exception can be made for gel purification when both of the
following conditions are true:
1. The length of the final product is below 10 kb.
2. Crystal violet (Sigma) is used in the agarose gel instead of ethidium

bromide.
Crystal violet allows visualization of DNA bands without UV light, thus
minimizing damage to the DNA template. A 10 kb final product was
successfully assembled from five fragments that were gel purified using
agarose gels containing crystal violet (A.V. Bryksin, unpublished data).
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• No primers should be used in PCR Step A in Fig. 1. This will allow the overlaps
to anneal and extend forming various fusion products, including the target
product. Although omission of this step can sometimes successfully produce a
fusion product (12, 14), in our experience, inclusion of this step produces
reliable results. The ‘bind-and-wash’ purification steps before and after PCR
Step A partially remove residual primers from the previous amplification
reactions and thus are also critical for success. Gel purification with crystal
violet visualization (instead of UV and ethidium bromide) can be used for
purification of fragments before PCR Step A, but only if the length of the final
recombinant product is less than or equal to 10 kb. We have not tested
whether this works for 20 kb fusions. 

• The length of overlapping sequence (see Fig. 2) for each fusion point should be
at least 20–30 nt when the final product is under 3 kb, 35–40 nt when the final
product is 3–10 kb, and 50–70 nt when the final recombinant product is
greater than 10 kb. Fig. 2 shows the design of two chimeric primers for one
fusion point. The length of overlapping sequence equals the sum of the extra
sequences included in the two chimeric primers shown in Fig. 2.

• It is possible and often desirable to design only one chimeric primer per fusion
point and to use a regular primer on the other side. In our experience, chimeric
primers do not work well when the fragment to be amplified is 7 kb or longer.
Also, chimeric primers may not work when the fragment has to be amplified
from genomic DNA. In this case, it is preferable to use regular (nonchimeric)
primers to amplify this problem fragment and to use chimeric primers for
amplification of the adjacent fragments. In this case, in Fig. 2, a chimeric
primer would be used for amplification of fragment B and a regular primer
would be used for amplification of fragment A. If only one chimeric primer will
be used for a fusion point, it should contain twice the length of the extra
sequence (overlap) that would normally be required for a fusion point
assembled using two chimeric primers. 

• It is strongly recommended that nested primers (20–50 nt away from the
terminus) are used during amplification of the final product (PCR Step B in
Fig. 1). This will improve the purity of the final product and also decrease the
chance of failure of the project. Proofreading polymerases are believed to
degrade PCR products at the ends due to their exonuclease activity. This can
prevent binding of the original terminal primers (top of Fig. 1) to the final
product (bottom of Fig. 1) because the homologous sequence at the ends has
been degraded. This is why it is desirable to use nested primers in the final
amplification step.

• Long PCR in general is much more sensitive to the quality of the template (16)
than regular short PCR. Repeated freezing and thawing and/or storage in
distilled water, rather than in a buffer with a pH above 7, will also render a
template unusable for long PCR (16). It is recommended that DNA templates
for long PCR are stored at 4°C in 5 mM Tris/HCl (pH 8 or 8.5). This rule is less
critical for projects in which all fragments are shorter than 5 kb.
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Figure 2. Designing chimeric primers. 
Only adjacent ends of two DNA fragments are shown in the figure. One needs to know
the terminal DNA sequence of the adjacent fragments in a prospective fusion point in
order to design chimeric primers. Typically, two chimeric primers are designed for each
fusion point. One chimeric primer will serve as a reverse primer for amplification of
fragment A and this chimeric primer is created by combining short terminal sequences
from complementary DNA strands of fragments A and B, as shown in the flowchart
directed to the left. The forward primer for amplification of fragment A is not shown in the
figure. The second chimeric primer will serve as a forward primer for amplification of
fragment B and this chimeric primer is created by combining short terminal sequences
from direct DNA strands of fragments A and B as shown in the flowchart directed to the
right. The reverse primer for amplification of fragment B is not shown in the figure. A
DNA sequence editor and/or primer design software would be helpful for this task. The
length of overlapping sequence for each fusion point should be at least 40 nt when the
final product is under 10 kb, and 50–70 nt when the final recombinant product is longer
than 10 kb. The total length of overlapping sequence equals the sum of the lengths of
extra sequences included in the two chimeric primers. For example, if the reverse
chimeric primer has 40 nt of extra sequence in it, whilst the direct chimeric primer has
30 nt of extra sequence, then, after fragments A and B are amplified using those chimeric
primers (and two other primers not shown in the figure), fragments A and B will have an
overlap of 30 + 40 = 70 bp.
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2.4 Recommended protocols 

2.4.1 Long triple fusion

The protocols described below can be used for the creation of linear DNA
molecules of 3–20 kb from three fragments. 

Primer design

To design chimeric primers, it essential to know the sequence of each DNA
fragment, or at least 40–50 bp of sequence at each end of every fragment if the
complete sequence is unavailable.

For amplification of fragment A, identify the desired fusion point between the
fragments of interest (fragments A and B in Fig. 2) and select 25–30 nt from the
antisense strand of fragment A (as if you are designing a normal reverse primer for
amplification of this DNA fragment). The exact number of terminal nucleotides
will depend on the melting temperature of the resulting oligonucleotide, which
should be between 62 and 68°C. Remember that the 5¢ end of your
oligonucleotide is fixed at the end of fragment A (fusion point) and you can only
vary the 3¢ terminus of the oligonucleotide.

Now add 30–40 nt of sequence from the terminus of fragment B (also from
the complementary strand, as shown in the downward flow chart in Fig. 2) to the
5¢ end of this reverse primer. The combined oligonucleotide is a reverse chimeric
primer for amplification of fragment A. Design a forward primer for fragment A
(not shown in Fig. 2). This should be a regular primer if fragment A is the first
fragment in the construct. The extra sequence included in the reverse chimeric
primer will ensure that after you have amplified fragment A from its source DNA,
the amplicon will contain additional sequence that overlaps fragment B.

Use a similar approach to design a forward chimeric primer for amplification
of fragments B and C. Make sure that the melting temperature of the template-
binding moiety of each chimeric primer (see Fig. 2) is around 62–68°C. During
amplification of the component fragments (see Protocol 1 and top of Fig. 1), a
high annealing temperature should be used (62–68°C). This will ensure a high
specificity of PCR and a low level of side-products, as a high annealing
temperature minimizes mispriming and the formation of secondary structures
(15).

For each fusion point, make sure that the total length of extra 5¢ sequence
included in the chimeric primer(s) is at least:

• 20–30 nt when the final product is under 3 kb 
• 35–40 nt when the final recombinant product is less than or equal to 10 kb
• 50–70 nt when the final recombinant product is between 10 and 20 kb long

When designing primers for generating amplification fragments, it is
important to include an additional 20–50 nt at the extreme 5¢ end of fragment A
and at the 3¢ end of fragment C (or the final fragment) in order to allow for nested
primers at the final amplification step (see top and bottom of Fig. 1).

The steps outlined above should provide two primers for each DNA fragment
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and at least one chimeric primer for each fusion point. When ordering primers,
request polyacrylamide gel electrophoresis (PAGE) purification for chimeric
primers. If chimeric primers (long oligonucleotides) are not PAGE purified, they
will contain erroneous oligonucleotides (resulting from the shortcomings of
automated oligonucleotide synthesis), which can introduce base changes and
deletions in the final product. 

Protocol 1

Amplification of fragments from source DNA
Equipment and Reagents
■ One of the following PCR kits: 

■■ TripleMaster polymerase (Eppendorf)
■■ Long Template Expand polymerase (Roche)
■■ Herculase HotStart polymerase (Stratagene)
■■ EXL polymerase (Stratagene)
■■ Advantage-HF 2 PCR kit (Clontech)a

■ Nuclease-free water (Promega)
■ DMSO (Sigma)
■ Thermal cycler
■ 10 mM Ultrapure dNTP mix (Sigma)
■ GM3 synthase gene BAC clone DNA (50 ng/ml)
■ GM3 synthase forward primer: 5¢-TCTGAGAGTAACTGCCCTCTTGACATC-3¢ (50 mM)
■ GM3 synthase reverse primer: 5¢-CATCTTGCTTTGAGCTCGGGTG-3¢ (50 mM)
■ p3XFLAG-CMV-9 vector (1 mg/ml; Sigma)
■ p3XFLAG-CMV-9 vector forward primer (chimeric): 5¢-

GTGATTGCTCGAGGCCTTCCCTGCAATGGTACACCCGAGCTCAAAGCAAGATGATTGAACAAGATG
GATTGCACGCAGGTTC-3¢ (50 mM)

■ p3XFLAG-CMV-9 vector reverse primer (chimeric): 5¢-
ATGCATTTTTTTCATGTCACATTCTTCAGTAGTATAATTTAACTTGAGGATATAAAGGATCCACACTCCA
GGGAATTGATCCAGACATGATAAGATACA-3¢ (50 mM)

■ Human genomic DNA (0.1 mg/ml)
■ Example forward primer: 5¢-TGGAGTGTGGATCCTTTATATCC-3¢ (50 mM)
■ Example reverse primer: 5¢-AGACCTTCTTCTGCCCATATACATC-3¢ (50 mM) 

Method
1. Amplify each of your three DNA fragments using a typical protocol recommended by the

manufacturer of your PCR kit(s)b,c. 

2. For the generation of a 20 kb fusion, use the following protocols.

3. For fragment A (11.2 kb), combine:
■ 33 ml of nuclease-free water 
■ 5 ml of reaction buffer (Herculase HotStart DNA polymerase kit)
■ 2.5 ml of dNTPs (10 mM)
■ 5 ml of human GM3 synthase gene BAC clone DNA 
■ 1 ml of GM3 synthase forward primer 
■ 1 ml of GM3 synthase reverse primer
■ 1 ml of Herculase HotStart polymerase 
■ 1.5 ml of DMSO
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4. Place the tube in a thermal cycler and run the following program:
■ Initial denaturation step at 92°C for 1 min 
■ 27 cycles of denaturation at 92°C for 10 s, annealing at 65°C for 30 s, and extension at

68°C for 11 min 30 s (plus automatic extension of the extension time by 5 s per cycle) 
■ Final additional extension step at 68°C for 13 min 
■ Hold at 4°C

5. For fragment B (1.7 kb), combine:
■ 36.7 ml of nuclease-free water 
■ 5 ml of HF buffer (Advantage-HF 2 PCR kit) 
■ 5 ml of dNTPs (10 mM)
■ 0.3 ml of p3XFLAG-CMV-9 vector
■ 1 ml of p3XFLAG-CMV-9 vector forward primer
■ 1 ml of p3XFLAG-CMV-9 vector reverse primer
■ 1 ml of HF polymerase

6. Place the tube in a thermal cycler and run the following program:
■ Initial denaturation step at 94°C for 30 s 
■ 26 cycles of denaturation at 94°C for 15 s, annealing at 65°C for 40 s, and extension at

68°C for 1 min 50 s 
■ Final additional extension step at 68°C for 3 min 
■ Hold at 4°C

7. For fragment C (7.5 kb), combine:
■ 35 ml of nuclease-free water 
■ 5 ml of reaction buffer (Herculase HotStart DNA polymerase kit)
■ 2.5 ml of dNTPs (10 mM)
■ 3 ml of human genomic DNA
■ 1 ml of example forward primer 
■ 1 ml of example reverse primer 
■ 1 ml of Herculase HotStart polymerase 
■ 1.5 ml of DMSO

8. Place the tube in a thermal cycler and run the following program:
■ Initial denaturation step at 92°C for 1 min 
■ 26 cycles of denaturation at 92°C for 10 s, annealing at 60°C for 30 s, and extension at

68°C for 7 min 30 s (plus automatic extension of extension time by 4 s per cycle) 
■ Final additional extension step at 68°C for 9 min 
■ Hold at 4°C

Notes
aThis kit will only amplify fragments shorter than 4 kb, but it offers the best PCR error rate.
bIt is OK to use different kits for different fragments as long as they are from the list of
recommended PCR kits above.
cBe sure to use a high annealing temperature (62–68°C) in your PCRs, especially the ones that
include chimeric primers, in order to minimize the level of nonspecific PCR products.
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Protocol 2 serves three purposes: 

1. To remove primers and buffer from a PCR product.
2. To analyze the length of the PCR product.
3. To quantify the PCR product.

We usually use crystal violet instead of ethidium bromide for staining of agarose
gels as it is safer and does not require UV exposure, but this protocol will also work
if ethidium bromide is used throughout instead of crystal violet. If one of your
fragments is shorter than 0.5 kb, which is rare for a long fusion project, then
please see note e (Protocol 2 ).

Protocol 2

Analysis and purification of each fragment
Equipment and Reagents
■ Crystal violet (2 mg/ml; Sigma)
■ 1% (or 0.5% for long PCR products) agarose gel, containing 30 µl of the crystal violet

stock solution per 150 ml of agarose.
■ 5¥ Loading buffer (10% Ficoll 400, 0.1 M EDTA, pH 8.0, 120 µg/ml crystal violet)
■ White light box and camera
■ Apparatus required for electrophoresis
■ 1¥ TAE running buffer (4.84 g/l Tris base, 1.142 ml/l glacial acetic acid, 0.372 g/l EDTA in

distilled water)
■ QIAquick PCR purification kit (Qiagen)
■ QIAquick gel extraction kit (Qiagen) (optional)
■ DNA molecular weight markers, such as a 1 kb DNA step ladder (Promega)
■ Spectrophotometer

Method
1. Purify each PCR product using a ‘bind-and-wash’ DNA purification kit, such as a QIAquick PCR

purification kita, following the manufacturer’s instructions.

2. Elute the purified PCR product with 30 µl of 5 mM Tris/HCl (pH 8.5) (this is a twofold dilution
of the Qiagen elution buffer supplied with the kit)b. 

3. Load and run 5 ml of each PCR product (see Protocol 1) on your agarose gel. Also include a lane
with 0.5 mg of DNA marker in 10 ml of the same loading buffer as the PCR samplesc.

4. Use a white light table (instead of UV light)d to view the results of the electrophoresise.

5. Assess whether your PCR products are the correct length.

6. Quantify your PCR products either visually (by comparing the intensity of PCR bands with the
intensity of DNA marker bands) or by using spectrophotometry to calculate approximate
concentrations of the PCR products. 

Notes
aThis purification is necessary in order to remove (at least partially) the primers and buffer from the
previous PCR.
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bThis is optional: if the length of your final recombinant product is less than or equal to 10 kb, you
may use gel purification using a crystal violet-containing agarose gel and a gel extraction kit such
as a QIAquick gel extraction kit (Qiagen). In this case you can skip the ‘bind-and-wash’ purification
step in step 1, but may have to repeat electrophoresis in order to quantify your DNA samples. The
gel purification procedure will completely remove previous primers and primer dimers from your
PCR products.
cThis is necessary for correct visual quantification of DNA amounts in PCR samples.
dYou may use the regular ethidium bromide-stained agarose gels and UV light throughout this
protocol for analysis of PCR results. However, if you decide to use gel purification of your PCR
products (see note b), ethidium bromide and UV light should be avoided as they will damage the
DNA and may lead to failure of the multiple fusion procedure.
eYou may have a problem viewing fragments smaller than 0.9 kb using crystal violet. In this case,
increase the amount loaded on the gel two- to threefold and use a dark room to view the results.
It is almost impossible to see DNA shorter than 0.5 kb using crystal violet. If this is the case, use
0.75 ml of ethidium bromide (10 mg/ml stock) per 150 ml of agarose throughout this protocol
instead of crystal violet.

Protocol 3

Overlap extension reaction (see Fig. 1, PCR Step A)
Equipment and Reagents
■ One of the PCR kits mentioned in Protocol 1
■ Nuclease-free water (Promega)
■ DMSO
■ Thermal cycler
■ 10 mM Ultrapure dNTP mix (Sigma)

Method
1. Prepare a 50 ml PCRa. Combine equimolarb amounts of all three purified fragments (from

Protocols 1 and 2) in a final volume of 10 ml, but do not add primers. An example for the
generation of a 20 kb reaction is shown below. Combine:
■ 29 ml of water 
■ 5 ml of reaction buffer (Herculase HotStart DNA polymerase kit) 
■ 2.5 ml of dNTPs (10 mM) 
■ 3 ml of 11 kb fragment A (total ~0.45 mg) in 5 mM Tris/HCl (pH 8.5)
■ 1.5 ml of 1.7 kb fragment B (total ~0.07 mg) in 5 mM Tris/HCl (pH 8.5)
■ 5.5 ml of 7.5 kb fragment C (total ~0.31 mg) in 5 mM Tris/HCl (pH 8.5)
■ 1 ml of Herculase HotStart polymerase 
■ 2.5 ml of DMSO 

2. Run the reaction for 11–15 cycles using an annealing temperature of 60°Cc and the following
program:
■ Initial denaturation step at 92°C for 1 min 
■ 13 cycles of denaturation at 92°C for 10 s, annealing at 60°C for 1 min, and extension at

68°C for 21 mind

■ Final additional extension step at 68°C for 21 min 
■ Hold at 4°C
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Notes
aIf a larger final volume is required, i.e. 200 ml, set up four separate 50 ml reactions and combine
following cycling.
bEquimolar concentrations of fragments ensure that the overlapping sequence is as likely to anneal
to an adjacent fragment as to its complementary strand in the same fragment. If one of the
fragments has a higher molar concentration than the others, the overlapping sequence that it
contains will be more likely to anneal with the complementary strand of the same fragment than
with the other fragments. In the example, we have three purified DNA fragments of 11, 1.7, and 7.5
kb. The DNA concentration of fragments A, B, and C are 0.150, 0.047, and 0.056 mg/ml, respectively.
The fragments should be in the following proportions by weight to achieve equimolar
concentrations: 11 : 1.7 : 7.5 (molecular weight of DNA is roughly proportional to its length). From
these weight proportions, we have to calculate the volumes of fragments given their known
concentrations. We need to solve the equation:

V = VA + VB + VC = (11 * M/CA) + (1.7 * M/CB) + (7.5 * M/CC)

where V is the sum of volumes of all DNA fragments (in ml; 10 ml in our case); VA, VB, and VC are the
volume of fragments A, B, C in ml, respectively; CA, CB, and CC are the concentrations of fragments
A, B, and C in mg/ml, respectively; and M is the 1/P fraction of the total amount of DNA in the
reaction (in mg).

The value of P is calculated by adding up the values in the weight proportions above (or just the
lengths of the DNA fragments); therefore, P = (11 + 1.7 + 7.5) = 20.2. Hence, M is defined as
approximately 1/20 of the total amount of DNA. It is not difficult to calculate M, which equals
0.041 mg. Now the formula for calculation of the final volume of each DNA fragment
(corresponding to equimolar amounts of DNA fragments in the reaction) is:

Vx = Lx * M/Cx

where Lx is the length of a fragment (A, B, or C) in kilobases, M is the value we calculated above,
and Cx is the concentration of the fragment (A, B, or C) in mg/ml.

For example, for fragment A:

VA = LA * M/CA
VA = 11 * 0.041/0.150
VA = 3

Therefore, we have volumes of 3, 1.5, and 5.5 ml for fragments A, B, and C, respectively. The higher
the total amount of DNA fragments that you use in this overlap-extension step, the better the
outcome of the fusion; the recommended minimum total amount of DNA of all fragments in a
50 ml reaction is around 0.4 mg. Therefore, you should try to obtain the highest concentration of
each fragment that is possible in Protocol 2. You could use one QIAquick column to process two
50 ml reactions of each fragment and elute the DNA with 30 ml of 5 mM Tris buffer. 
cThis should work for the annealing of 40 nt or longer overlaps. For troubleshooting, you can lower
the annealing temperature to 55°C.
dUse an extension time that corresponds to the total length of the final recombinant product, i.e.
1 min per kb for most PCR kits. For example, if the length of your target product is 10 kb, use a
10 min extension time in your cycling program. Theoretically, overlap extensions cover only part of
the total length of the final product, but we find that using an extra extension time leads to better
results.
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Protocol 4

Purification of intermediary producta

Equipment and Reagents
■ QIAquick PCR purification kit (Qiagen)

Method
1. Purify each PCR product using a ‘bind-and-wash’ DNA purification kit, such as a QIAquick PCR

purification kit a, following the manufacturer’s instructionsb. For the elution step, use 30 µl of
5 mM Tris/HCl (pH 8.5)c.

Notes
aThis purification step is optional if you used crystal violet gel purification in Protocol 2 as gel
purification removes all primers completely. You may still want to do this step to concentrate your
sample.
bIf a reaction volume larger than 50 ml was generated from Protocol 3, load the separate 50 ml
reactions sequentially onto a single QIAquick column to achieve the highest concentration. It is not
necessary to run agarose gel electrophoresis at this point, as you will not see your fusion product
here due to its very low concentration.
cThis is a twofold dilution of the Qiagen elution buffer supplied with the kit.
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Protocol 5

Amplification of the final recombinant producta

Equipment and Reagents
■ One of the PCR kits mentioned in Protocol 1
■ Nuclease-free water
■ Thermal cycler
■ 10 mM Ultrapure dNTP mix (Sigma)
■ Example forward primer: 5¢-AAAGCAGGCAATTGAATGACAGTAATGATG-3¢ (50 mM)
■ Example reverse primer: 5¢- GTGTAGCATTCAAGGCCTTTTGCTATCTGG-3¢ (50 mM)

Method
1. Amplify the final product using a typical protocol recommended by the manufacturer of your

PCR kit(s). For example, for a 50 ml reactionb (see Fig. 1, PCR Step B), combinec:
■ 28.2 ml of water 
■ 5 ml of reaction buffer (Herculase HotStart DNA polymerase kit) 
■ 2.5 ml of dNTPs (10 mM) 
■ 10 ml of purified DNA from PCR Step A (Protocol 4) 
■ 0.4 ml of example forward primer 
■ 0.4 ml of example reverse primer 
■ 1 ml of Herculase HotStart polymerase
■ 2.5 ml of DMSO

2. Place the tube in a thermal cycler and run the following program:
■ Initial denaturation step at 92°C for 1 min 
■ 31 cycles of denaturation at 92°C for 10 s and combined annealing and extension at 68°Cd

for 20 min 40 s (plus automatic extension of extension time by 10 s per cycle) 
■ Final additional extension step at 68°C for 30 min
■ Hold at 4°C

Notes
aThis step is shown as PCR Step B in Fig. 1. The use of nested primers here (if you planned for them
in Protocol 1) will improve purity and the chances of success of your fusion.
bA 50 ml reaction volume per tube offers fast enough exchange of heat between the thermal cycler
and the reaction mixture and at the same time is convenient for mixing all of the components in
the right amounts.
cAn aliquot of your template (from Protocol 5) can comprise up to 1/5 of the volume of the PCR.
dMake sure that you use a high annealing temperature (65–68°C) to achieve the lowest level of
nonspecific PCR products in your reaction. This assumes that you have designed primers that have
a high melting temperature as described in section 2.4.1.
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Protocol 6

Analysis and purification of final product
Equipment and Reagents
■ Crystal violet (2 mg/ml; Sigma)
■ 1% (or 0.5% for long PCR products) agarose gel, containing 30 µl of the crystal violet

stock solution per 150 ml of agarose
■ 5¥ Loading buffer (10% Ficoll 400, 0.1 M EDTA, pH 8.0, 120 µg/ml of crystal violet)
■ White light box and camera
■ Apparatus required for electrophoresis
■ 1¥ TAE running buffer (4.84 g/l Tris base, 1.142 ml/l glacial acetic acid, 0.372 g/l EDTA in

distilled water)
■ QIAquick PCR purification kit or QIAquick gel extraction kit (Qiagen)
■ DNA molecular weight markers, e.g. 1 kb DNA step ladder (Promega)

Method
1. Load and run 5 ml of each PCR on your agarose gela. Also include a lane with 0.5 mg of DNA

marker in 10 ml of the same loading buffer as the PCR samplesb.

2. Use a white light table (instead of UV light)c to view the results of the electrophoresis to
determine whether the PCR products are of the correct lengthd.

3. Purify each PCR product using a ‘bind-and-wash’ DNA purification kit, such as a QIAquick PCR
purification kit, following the manufacturer’s instructions.

4. Quantify your PCR products visually (by comparing the intensity of PCR bands with the
intensity of DNA marker bands) or using spectrophotometry.

Notes
aLoad 20–40 ml if gel purification is required.
bThis is necessary for correct visual quantification of DNA amounts in PCR samples.
cYou can use ethidium bromide-stained agarose gels and UV light throughout this protocol for both
analysis and purification of PCR products. However, be advised that ethidium bromide and UV light
can damage DNA and may decrease the quality of your final product.
dIf you did not get the expected PCR product, refer to section 3 below.

Additional considerations

It is recommended that you sequence across the fusion points to verify whether
the assembly has worked correctly. You can also sequence other critical regions of
your construct to make sure they have no PCR errors.

Prepare a sufficient quantity of your final product for the downstream
application. If the desired end product is linear, then it is not necessary to clone it
into a plasmid vector to obtain a large quantity. Instead, one can set up a large-
scale final amplification reaction (see Protocol 5), gel purify the PCR product and
use it for a desired downstream application such as cell transfection. It is possible
to obtain 5–10 mg of pure final product using this approach. 
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Fig. 3 shows a 20 kb product that we obtained successfully by fusing three
fragments of 10.7, 1.7, and 7.5 kb (1). If the size of the final product is 12–20 kb,
you may need to use pulsed-field electrophoresis to measure the size of your PCR
product. It is possible to use regular electrophoresis with 0.5% agarose for proper
assessment of DNA fragments up to 12 kb with appropriate DNA size markers.

2.4.2 Long multiple fusions

The process described below can be used for the assembly of four or five
fragments into products up to 10 kb. The basic procedure is outlined briefly in
Fig. 4. The detailed procedure is outlined in Fig. 1. The majority of the steps
involved are identical to those outlined in the protocols above:

• Analysis and purification of each fragment. This protocol is identical to
Protocol 2, except that, for a quintuple fusion, it is preferable to use gel
purification using a crystal violet-based agarose gel.

• Overlap extension reaction. This step is depicted in Fig. 1 as PCR Step A and in
Fig. 4 as PCR Steps A.1 and A.2. One should use two separate reactions for
adjacent fragments: A+B and C+D as shown in Fig. 4. The protocol is largely
identical to Protocol 3, except that extension times in PCRs should correspond
to the length of products A+B or C+D, not the final product A+B+C+D (see
Fig. 4).

• Purification of intermediary product. This protocol is identical to Protocol 4
and is applied to products A+B and C+D separately.
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33.5 kb
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Figure 3. Pulsed-field gel electrophoresis of the 20 kb product.
Pulsed-field gel electrophoresis of the 20 kb product of long triple fusion of fragments of
10.7, 1.7, and 7.5 kb (adapted from 1). P, 20 kb product; M, DNA molecular weight
markers.

12-MX-PCR-ch12-ccp  20/3/07  17:20  Page 212



• Additional overlap extension reaction. This step is depicted in Fig. 4 as PCR
Step B.1. The protocol is largely identical to Protocol 3, except that the
calculation of eqimolar amounts is omitted, and equal aliquots of products
A+B and C+D are used for a total of 1/5 of the final volume of the PCR. For the
quintuple fusion, products A+B, D+E, and fragment C are mixed in equal
aliquots and fused.

• Amplification of final recombinant product. This step is shown as PCR Step
B/B.2 in Figs 1 and 4. The use of nested primers here will improve purity and
the chances of success of your fusion. This protocol is identical to Protocol 5.
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PCR Step A.1 PCR Step A.2

PCR Step B.1: combine products of
steps A.1 and A.2 and run 12–20

cycles without primers

PCR Step B.2: amplify the target
product using nested primers

13–15 cycles without primers, in
separate PCRs

C
B D

A CB D

A

Figure 4. A brief outline of long quadruple fusion.
This technique was used successfully to assemble a 10 kb product. The procedure can
also be used for the assembly of five fragments into products up to 10 kb. A more
detailed procedure is outlined in Fig. 1, with the exception of the steps between PCR Step
A and PCR Step B. For the quintuple we used pairwise fusions of A+B and D+E, and then
mixed those two products with fragment C during PCR Step B.1.
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• There are problems with amplifying a fragment with chimeric primers
Amplify the fragment with regular primers, purify it with a bind-and-wash kit,
and then reamplify the fragment with chimeric primers. During the
reamplification, use 25% or more of the total amount of DNA obtained in the
first PCR and run the reamplification for only 10–12 cycles.

• No product is obtained in the final amplification
Check the sequences of all chimeric primers and the method shown in Fig. 2.
Ensure that you have adhered to the principles outlined in section 2.3.

• An individual fragment cannot be amplified
•• Check whether the template contains extended GC-rich sequences. 
•• Make sure that you are using one of the five recommended kits.
•• If you are using chimeric primers with genomic DNA or with long

fragments (7 kb or more), try to redesign new primers such that chimeric
primers are only used for shorter fragments or for fragments amplified
from plasmid DNA. 

•• Try using the Herculase HotStart DNA polymerase kit (Stratagene) for the
problem template.

•• Some problems with amplification of individual fragments can arise from
poor quality of the source DNA. If it is a genomic DNA, phenol extraction
is recommended. A substantial amount of template is needed for long PCR,
in addition to good quality of template. For a successful long PCR,
0.3–1 mg of DNA template per 50 ml reaction is often needed. This applies
to fusion steps A and B, as well as to amplification of individual fragments.

• If you have read section 2.3 and followed the protocols but still cannot 
solve your problems with the method, feel free to contact me at
shevchook@hotmail.com.
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